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To describe certain plane-symmetrical gas flows, a centred Riemann wave is used -the solution of the 
system of equations of gas dynamics possessing a specific characteristic: U = U(x,/t), where U is the 
vector of the required functions. Many interesting problems in gas dynamics can be solved using the 
centred Riemann wave [l]. In the case of cylindrically and spherically symmetrical flows the self-similar 
solutions possess a similar feature: U = U(r/?). Using these solutions one can describe, in particular, 
the unbounded and bounded contraction of a gas to the axis or the centre of symmetry [3,4]. To describe 
a flow possessing the properties of a centred Riemann wave in the neighbourhood of a point with a 
non-zero value of the coordinate r (for example, r = 1) or in the multidimensional case, special 
converging infinite series are employed (for a detailed bibliography see [5]). The following problems, 
for example, have been solved using such series: the instantaneous stopping of a piston [6], the escape 
of a gas into a vacuum [7-91, and the shock-free intense compression of a gas [5, lo]. In problems of 
the intense compression of a gas, in order to provide a more adequate description of the flows that 
occur it is necessary to take into account the equilibrium radiation and the Compton mechanism of 
the scattering of photons [ll, 121. 

1. CONSTRUCTION OF THE SERIES 

We will consider an ideal gas, taking into account the equilibrium radiation, i.e. we will take the following 
relations as the equations of state [12] 

p= RpT+oT4/3, e=c,T+aT4/p; R, CJ, c, = const > 0 (1.1) 

Here p is the pressure, p is the density, T is the temperature, e is the internal energy and o is the 
Stefan-Boltzmann constant. 

The thermal conductivity x, consistent with the Compton mechanism of photon scattering, is taken 
as [12] 

x =_oc*ac 2 

Y-1 P’ 
y-I=+>0 

” 
(1.2) 

where c. is the velocity of light and a is a positive constant, which depends on the choice of the system 
of units. 

To describe the flows of such a gas we can take p and T to be independent thermodynamic variables. 
Hence, we can use [13] the complete system of Navier-Stokes equations, in which the coefficients of 
dynamic and volume viscosity are assumed to be equal to zero. In the case of one-dimensional flows 
(v = 0, 1,2 corresponds to plane, cylindrical and spherical symmetry) and introducing 6 = In p as the 
required function instead of the density, this system has the form 
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u, + uu, + y-'TIC, + ~(6, T)T,. = 0 

7; + UT + O(6, T)(u, + vr-‘u) = x,c(6. T)(T,, + vr-‘T,. - 6,.T, + 3T,* I T) 

(1.3) 

a(&T)=y-‘(1+x ke-“T’), 1+x ke-‘T3 
* I h(&T)=(y-I)T * ’ 

1+x k e-“T’ * 2 

~(199, T) = 
e-20T3 

I + x,k2e-‘T’ 

In the system considered, without loss of generality, we can take the value t = 0 as the time origin. 
Also, using the positive constants L, p, and T, we can introduce, in a standard way, dimensionless 
variables, where the velocity of sound in a non-heat-conducting gas U, = kw is taken as the velocity 
scale. Then 

k _ 2P*u*L > 0 

’ - 3c*ct ’ 
k, =3(y-I)k, >O 

To describe the features that arise in the flow of gas at the instant of intense compression, as in the 
case of a non-heat-conducting gas [5], we changed the roles of the variables 6 and r. The variable 19 
(together with t) is assumed to be the independent variable, while r becomes the required function of 
t and 8. Hence, we make the following replacement of variables 

t = t: r = rf t’, 19) 

with the Jacobian transformation J = _rs, if the value of rf is finite. 
The Jacobian J vanishes if, in the physical space (the space of the independent variables t and r), 

the derivative 19, takes an infinite value. In this case, in the space of the independent variables t’, 
$3 the derivative of r, is equal to zero and there are no singularities. This property is the main reason 
for using this replacement: the required solution in the space of the independent variables t’, 6 at the 
point (t’ = 0, 8 = 0) will have no singularities, and in the physical space at the corresponding point 
the gradient will have an infinite value. The unknown function r(t’, I!+), which is determined only 
when constructing the required solution, occurs in the proposed replacement, and therefore 
nothing is so far known about the quantity r,(t’, 6). After the corresponding problem is solved, and, 
consequently, the function r(t’, S) has been obtained, it turns out that r,&‘, 19) If = o = 0 and, for a specified 
value of 6,,, a to > 0 will exist such that when 119 1 < 13~, 1 t I < to, I f 0 the inequality r&‘, S) f 0 will 
hold. 

When the above replacement is made, system (1.3) take the following form (we will henceforth omit 
the prime on t) 

r(u-~)+rud+Vuro =0 

rfiur + (u - 5)~ + y-IT + ~(19, T)To = 0 

ri[r,7; +(u-q)Tti +b(fi,T)(u, +vr-‘urg)]= 

= x,c(6, T)(r,T,, - r,,T, + vr-‘riTo - r,T, +3r,Ti IT) 

(1.4) 

In this case, in order to expand the singularity, related to the presence of r6 in the denominators in 
certain fractions, when obtaining system (1.4) the first equation is multiplied by rre, the second by 4 
and the third by r& 

The solution of system (1.4) is constructed in the form of a series 

r=o 
(1.5) 

where U = {r, u, T} is the vector of the required functions, 
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In order for the required flow at the point (t = 0, r = 1) to possess a singularity, similar to the singularity 
on the centred Reimann wave, the graph of the function 6 = 19(t, r) ) t=COnSt when t + - 0 should become 
a vertical straight line [5] 

r I,=o= 1 (1.6) 

The solution of system (1.4) in the form of series (1.5) will for the present be constructed using one 
condition - condition (1.6). 

If we put t = 0 in system (1.4) and the take equality (1.6) into account, the third equation becomes 
an identity, while the first two become the following relations 

ug - ‘1 + U;, = 0, (u* -‘1)u;,+y_‘To+a(6,To)Td=0 (1.7) 

If the third equation of system (1.4) is differentiated with respect to t, and if we put t = 0 and take 
condition (1.6) into account, we obtain the equation 

r,‘T,“- r,“T; - q’ T; + 3q’Td2 I T = 0 (1.8) 

As a result, for the three required quantities rl, u. and To we obtain system (1.7), (1.8) from the three 
differential equation, two of which are non-linear. It is a quite difficult problem to find the general 
solution of this system, although some progress in this direction is possible: by dividing Eq. (1.8) by 
r; To 

(In To’ -(In q’)’ - 1 + 3(ln To)’ = 0 

we can reduce the order of this equation 

T,T; = C,e%,: C, = const 

Further, we will take as the function To(~) the constant 

To(xY) = Too = const > 0 (1.9) 

which converts Eq. (1.8) into an identity. The use of the particular solution (1.9) results from the 
following. It is precisely this property of the temperature - the absence of a jump in the function Tat 
the instant t = 0 - that is observed in numerical calculations of the corresponding compression wave 
in a heat-conduction gas in the plane-symmetrical case [12]. 

In the case of the particular solution (1.9), the two remaining equations -Eqs (1.7) - have the following 
general solution 

u,(6)=+J~B+u,, r,(lY)=fJKB+u Oo~~PG (1.10) 

In relations (1.9) and (l.lO), as a result of integration, two arbitrary constants T,,,, and uoo appeared, 
while the function rl(t+) was defined uniquely. 

In order to obtain the coefficients r k+,, uk, and Tk when k 3 1, it is necessary to differentiate the first 
two equations of system (1.4) with respect to t, k times and the third equation of (1.4) k + 1 times, and 
then put t = 0. As a result we obtain three equations 

uk-rk+,+u; =Fk 

kr,ic, + (ug - q ,u; + L&(Uk -Tk+,)+y-‘Tk+u(&TOO)T;=Gk 

x,Too(k + I)r,‘(T;- T;) = H, 

where 

Fk =&$,(uk_, -rk_/+l +U;-,)+V’,‘U,-,l 
/=I 

while the functions Gk and Hk (not given here because of their complexity) also depend on Q+~, ul, 
T1(O s 1 c k - 1) and their derivatives. 
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From the third (differential) equation we first determine Tk 

q = q. + T,,e’ -a,IHkd~+ake”IH,e-Bd8 (1.11) 

ak =+ 
(k + Ib,,@- 

Then, from the second equation (also differential), first eliminating Q+~ from it using the first equation, 
we obtain uk 

(1.12) 

Finally, from the first equation (as from the algebraic equation) we determine rk+i 

‘k+i =u;+uk-& (1.13) 

Here, two arbitrary COnStantS Tko and Tkl occur in the eXpreSSiOn for Tk; in uk there iS one constant uko, 
which occurs as a result of integrating the differential equations. The coefficient rk+i was uniquely defined. 

The arbitrariness that arises when constructing series (1.5) is equivalent to specifying the conditions 

u(r. 6) lo=lJ= uO(t), T(t, 6) iti=o= T’(t), T,(t,*)/,=,= T’(r) (1.14) 

with arbitrary functions of the right-hand sides, but in this case 

uO(O) = um, To(O) = T,, T’(0) = 0 

Theorem. If the functions u’(t), p(t), and T(t), which occur in conditions (1.14), are analytical in a 
certain neighbourhood of the point t = 0, then series (1.5) converges in a certain neighbourhood of 
the point (t = 0,6 =O). 

To prove this, problem (1.4), (1.6), (1.14) is reduced, using a well-known method [5], to a certain 
standard form, for which the analogue of Kovalevskaya’s theorem on the existence and uniqueness of 
the solution in the class of analytical functions holds [5]. To refine the region of convergence of the 
series (and first of all when 19 3 0 when describing the gas compression) the functions rk+i, uk and Tk 
are analysed in detail. 

Lemma. The coefficients rk+i, uk and Tk, when k 2 1, are polynomials of ti and t~“~, and the maximum 
total degree of the monomials of the form IY~.P”~ occurring the them does not exceed UC, i.e. it + m/2 
s 2k. In this case each of the fUrKtiOnS rk+l, uk and Tk necessarily COntainS a monomial of the form 
eX8 with a non-zero coefficient. 

The proof is carried out by induction with respect to k using formulae (1.11~(1.13) and in its main features 
repeats the corresponding proofs in the case of a non-heat-conducting gas (see, for example, [5, S]), and hence 
will not be given here. 

Using the lemma it can be established that the region of convergence of series (1.5), which solves 
problem (1.4), (1.6) (1.14), is given by the formula 

Me’” 1 f Ic I, M=const>O (1.15) 

i.e. this region is unbounded with respect to the variable 6 
Taking formulae (1.9) and (1.10) into account, series (1.5) can be written in the form 

6 = (TJyXuoo -l)+Jrlr,(r-I)/t+rf(r,fi) 

u=(+Jy-‘TooB+u,)+rg(t,6), T = T, +th(t,6) (1.16) 

where the functionsf(t, 6), g(t, 6), h(t, 19) are analytical in the region (1.15). By the theorem on the 
existence of an implicitly specified function, the first of relations (1.16) defines 6 as a function of the 
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variables (r - 1)/t and t. Consequently, the two other gas-dynamic parameters u and T can also be assumed 
to be functions of these variables. 

The Jacobian of the transition from the variables t’ and r to the variables t’ and 6 can be written in 
the form 

J=--r, =+ y T,r+r2q(t,13) -dT 

where the functionq(t, 19) is also analytical in the region (1.15). Hence, when t = 0 the Jacobian vanishes, 
and for any finite value of 80 > 0 a to > 0 exists such that J f 0 when 1191 < e. and ItI c to, t f 0. 

2. APPLICATION OF THE SERIES 

Series (1.5) which gives the solution of system (1.4), can be joined directly via the acoustic characteristic 
with the other solution that represents the flow of heat-conducting non-viscous gas. It can be shown 
that system (1.3) has two families of acoustic characteristics C:, the trajectories of which r = r*(t) are 
solutions of the following differential equations 

dr,/dt=u+ y-‘T J- 

The initial data, specified on the C:-characteristics, by virtue of the form of system (1.3) should be 
such that 

19 I,* = c~,(r). x u I,; = (P#), T I,? = c~#), T, I,: = (~~0) (2.1) I 

The following additional constraint is imposed on the functions occurring on the right-hand side of 
relations (2.1) 

which is the necessary condition [5] for the characteristic problem (1.3) (2.1) to be solvable. 
When it is necessary to join the analogue of the centred Riemann wave with a uniform gas at rest 

with parameters p = 1 and T = 1, the sonic Cz-characteristic is specified by the equation 

r=l_+fy -% (2.2) 

while the initial conditions on it are such that 

l9 I,: = 0, ‘4 lc* = 0, TI,t= I, r, I,+=0 (2.3) x x x 

These functions naturally satisfy the necessary condition for the characteristic Cauchy problem to be 
solvable. 

In order that series (1.5), constructed above as a solution of problem (1.4), (1.6), (1.14), on charac- 
teristic (2.2) should be continuously joined with uniform rest (i.e. in order that conditions (2.3) should 
be satisfied), it is sufficient for the arbitrary constants occurring in series (1.5) to be taken such that 
the following equations are satisfied 

T,= 1, u@)=o; Tk(0) = ~~(0) = 0, k a I 

Here relation (2.2) for the series (1.5) will be satisfied automatically, since it can be proved by induction 
with respect to k that in this case ++1(0) = 0 when k 2 1. 

We can also prove by the method employed earlier in [9], that in the case of the other flow (non- 
uniform rest) the arbitrary constants occurring in the coefficients of series (1.5) can be specified so 
that the flow, described by formula (1.5), is identical with this other flow on its sonic CE-characteristic. 

Consequently, the flow of a heat-conducting gas, constructed in the form of series (1.5) -the analogue 
of a centred wave -can be continuously joined with the other specified flow via the sonic characteristic. 

If, for the flow specified by series (1.5), its sonic C$-characteristic issues in the opposite direction of 
the change in time, then, necessarily after a certain time, its trajectory will lie in the region of convergence 
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of series (1.5). Hence, on such a characteristic the flow will have no singularities, since the gas-dynamic 
parameters on it are specified by analytical functions. This in turn, by analogy with the case of a non- 
heat-conducting gas [14], enables us to formulate and solve the problem of obtaining the flow with a 
density distribution specified in advance, which continuously adjoins flow (1.5) via the above-mentioned 
sonic characteristic. 

Using numerical methods similar to those used previously in [15] in the case of a non-heat-conducting 
gas, we will construct both flow (1.5) - a compression wave similar to a centred wave, and flows which 
continuously adjoin it from both sides. On the one hand, this is background flow which, in general, may 
not be uniform rest. On the other hand, this is flow, with a value of the density specified in advance, 
up to which compression of the gas layer also occurs. In this case, to calculate the flow in the neigh- 
bourhood of the point (t = 0, r = 1) it will be necessary to use formulae (1.16). 

Using a well-known method [5] we can determine the asymptotic behaviour as t + -0 of the gas 
parameters on a piston which produces a compression wave described using series (1.5). 

Suppose the functions Y = R(t), 6 = o(t) and u = u(t) specify the trajectory of motion of an impene- 
trable piston and the parameters of the gas on it respectively. Then, first 

dR 
- = U(f) 
dt 

and second 

5 r,@(t)); = R(t) 
k=O 

Differentiating the second relation with respect to t and taking the first relation into account, we obtain 
the following ordinary differential equation for the function Q(t) 

(2.4) 

If we retain the principal terms in the series occurring in Eq. (2.4), we obtain the equation 

tdO(t)ldt = -I 

the general solution of which is as follows: 

O(t) = - In(-tp~~), PO, = const > 0, t<O (2.5) 

Naturally, formula (2.5) gives a certain approximation for the required relation o(t). When using 
this approximation for the value of the gas density on the compressing piston, the following approximate 
relation is obtained 

P L/3(,)-. (-t)-’ POI 7 t<o (2.6) 

For numerical calculations of the intense compression of a plane layer of a heat-conducting gas [12], 
carried out using the “Tigr” software package, which is highly recommended for solving a wide range 
of applied problems, the following asymptotic relation is obtained for-t 3 lo6 

which is fairly close to (2.6). 

p L(r)” w-‘~‘5Po,. tco 

However, approximate relations (2.5) and (2.6) must be used with certain provisos. Relation (2.5) 
can be rewritten in the equivalent form 

(-tp = prJ1 

The last relation establishes a relation between the variables t and 0. A comparison of this relation 
with the boundary of the region of convergence of series (1.5) leads to the following conclusion: if for 
any negative values of t the value of the function 6 1 r=R(tJ lies in the region (1.15), then, as t + -0 these 
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values will necessarily fall outside the limit of the region of convergence of series (1.5) and it will be 
inadmissible to use this series there. 

This conclusion is also confirmed by the following consideration. If function (2.5) is substituted into 
the series which specifies the gas velocity, then, as t -+ -0 the order of a term of the series u,(O)t will 
turn out to be (due to the term te2’) greater than the order of the zeroth term of the series us(O). This 
in turn indicates that the series obtained in this way is not asymptotic. 

Consequently, using series (1.5) one cannot give a strict mathematical proof of the possibility of 
compressing a non-zero mass of gas to infinite density (as was done in [5] in the case of non-heat- 
conducting gas). However, the fact that there is no limit with respect to the variable 19 of the region of 
convergence of this series leads to the following mathematically rigorously based conclusion: for any 
density p1 > 1, specified in advance, a non-zero mass of a uniform gas at rest (with p = 1) exists which, 
due to the action of an impenetrable piston, can be compressed shock-free to a density pl. This conclusion 
follows from the fact that for any value of p1 > 1 one can choose a trajectory 

r= R(r)= 5 r@(r)); 
k=O 

of the motion of the compressing piston, which, for all values of 0 G 0 G 6i = In@,), does not depart 
from the region (1.15), i.e. from the region of convergence of series (1.5). Then, the value of tl - to 
specifies the initial width of the layer of gas with p = 1, compressed to p = pi. Here the instants of 
time tl and to are such that @(t,) = I!+,, O(t,) = 0. 
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